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Dating the origin of the Orchidaceae from a fossil
orchid with its pollinator
Santiago R. Ramı́rez1, Barbara Gravendeel2, Rodrigo B. Singer3, Charles R. Marshall1,4 & Naomi E. Pierce1

Since the time of Darwin1, evolutionary biologists have been fas-
cinated by the spectacular adaptations to insect pollination exhib-
ited by orchids. However, despite being the most diverse plant
family on Earth2, the Orchidaceae lack a definitive fossil record
and thus many aspects of their evolutionary history remain
obscure. Here we report an exquisitely preserved orchid pollinar-
ium (of Meliorchis caribea gen. et sp. nov.) attached to the mesos-
cutellum of an extinct stingless bee, Proplebeia dominicana,
recovered from Miocene amber in the Dominican Republic, that
is 15–20 million years (Myr) old3. This discovery constitutes both
the first unambiguous fossil of Orchidaceae4 and an unpreced-
ented direct fossil observation of a plant–pollinator interaction5,6.
By applying cladistic methods to a morphological character
matrix, we resolve the phylogenetic position of M. caribea within
the extant subtribe Goodyerinae (subfamily Orchidoideae). We
use the ages of other fossil monocots and M. caribea to calibrate
a molecular phylogenetic tree of the Orchidaceae. Our results
indicate that the most recent common ancestor of extant orchids
lived in the Late Cretaceous (76–84 Myr ago), and also suggest that
the dramatic radiation of orchids began shortly after the mass
extinctions at the K/T boundary. These results further support
the hypothesis of an ancient origin for Orchidaceae.

Family Orchidaceae Juss., 1789
Subtribe Goodyerinae Klotzsch, 1846

Meliorchis caribea gen. et sp. nov.

Etymology. The generic name alludes to the plant’s pollination mode
by meliponine bees and incorporates the Greek name of an orchid
(orchis: testicle). The specific epithet caribea refers to the Caribbean
region.
Holotype. Museum of Comparative Zoology (Harvard University),
catalogue number MCZ-31141.
Horizon and locality. Specimen was excavated in the year 2000 from
a mine located east of Santiago, Cordillera Septentrional, Dominican
Republic. Lignite and sandy clay beds, Early to Middle Miocene (15–
20 Myr old; ref. 3).
Diagnosis. The species is separated from other members of
Goodyerinae by the bent anther, large angular massulae (,100 per
pollinarium), and tightly packed pollen units (20 3 20 mm). The
amber piece (20 3 14 3 5 mm) contains a single inclusion of
Meliorchis caribea. Two complete pollinia (each ,1,000 3 500 mm),
belonging to a single pollinarium, are firmly attached to the mesos-
cutellum of a worker bee, Proplebeia dominicana7 (Fig. 1a). The
tapering pollinia consist of .100 loosely packed angular massulae
(,200 3 100 mm, Fig. 1b), each of which encapsulates several tetrads;
obovoid pollen units are tightly packed.

These pollinarium features are found only in the Orchidoideae8. A
survey of herbarium specimens of all Neotropical genera within this

subfamily showed that the size, shape and ornamentation of the
fossil closely resemble those of modern members of the subtribe
Goodyerinae, particularly the genera Kreodanthus and Microchilus
(Supplementary Table 1). In addition, the position of the pollinar-
ium on the fossilized bee enables us to make inferences about unique
aspects of the flowers of Meliorchis, even in the absence of fossil
flowers. Whereas in living Goodyerinae the pollinarium normally
is attached to the mouthparts of pollinating bees9 (Fig. 2a), the
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Figure 1 | Holotype of Meliorchis caribea gen. et sp. nov. This orchid
pollinarium, carried by a worker stingless bee (Proplebeia dominicana), is
preserved in amber from the Dominican Republic and represents the first
definitive fossil record for the family Orchidaceae. a, General view of
encapsulated specimen (scale bar, 1,000mm). b, Detailed view of the pollinia
surface showing pollen units (scale bar, 50 mm).
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pollinarium of Meliorchis is attached to the mesoscutellum (dorsal
surface of the thorax) of worker bees of P. dominicana. This indicates
that the flower of M. caribea was gullet-shaped, and, rather than the
bee probing the lip of the flower with its tongue as in modern
Goodyerinae (Fig. 2a), the anterior part of the bee would have had
to enter the flower completely (Fig. 2b).

Because evidence of plant–pollinator interactions is exceedingly
rare in the fossil record, our current knowledge of ancient pollination
is indirectly inferred from specialized morphological features of fos-
silized insects10–12 and flowers13–15. In addition, records of pollen
grains on fossil insects and in coprolites provide circumstantial evid-
ence for ancient insect–flower interactions5,6,10,12,14, although these
observations—with the exception of amber-preserved fig wasps car-
rying fig pollen6—do not exclude the possibility of flower visitation
without pollination5. In contrast, because in most orchids the stam-
inal filaments are fused to the style, the anatomical match required
for a pollinator to remove the pollinarium is nearly identical to that
necessary for its subsequent delivery (Fig. 2). Thus, P. dominicana bee
workers were almost certainly pollinators of flowers of M. caribea.
Because modern stingless bees pollinate numerous rainforest angios-
perms16, including several tropical orchid species17, this fossil shows
that adaptation by tropical orchids to specialized pollinators
occurred at least as far back as the Miocene.

To explore the phylogenetic position of Meliorchis in relation to
Modern orchid taxa, we constructed a morphological character
matrix consisting of 25 characters and 15 taxa adapted from a pre-
vious study18 (see Supplementary Methods for details). Heuristic tree
searches optimized by maximum parsimony yielded 129 equally
short trees, all of which supported monophyly of both the subfamily
Orchidoideae and the subtribe Goodyerinae (Fig. 3). The position of
Meliorchis within Goodyerinae is supported by a bootstrap of 91%.
Of the 129 recovered trees, none supported Meliorchis as a sister clade
to the rest of the Goodyerinae genera. Together, these results indicate
that Meliorchis represents a differentiated lineage within extant
Goodyerinae. On the basis of estimated ages of Dominican amber3,
a minimum age of 15–20 Myr can be assigned to the subtribe
Goodyerinae.

Previously published putative orchid fossils have lacked diagnostic
characters that would definitively assign them to Orchidaceae4,19. In
fact, in a thorough review of all known specimens, it was concluded
that Orchidaceae have ‘no positive or useful fossil record’4. This
absence in the fossil record, most likely owing to their non-diagnostic
leaves and lack of wind-dispersed pollen, has spurred considerable
disagreement regarding orchids’ age of origin and timing of

diversification. Whereas orchids’ highly specialized pollination
mechanisms, epiphytism and absence in fossil deposits were cited
by early workers in support of a recent age4,20,21, their worldwide
distribution2 and basal placement in the order Asparagales22 suggest
an older age. Indeed, three recent molecular clock studies that
broadly sampled angiosperm clades (including a few orchid repre-
sentatives) obtained radically different age estimates for the
Orchidaceae, ranging from ,26 Myr old23 and ,40 Myr old24 to
,110 Myr old25. Such age discrepancies are most likely due to
under-represented sampling and absence of internal calibration
points. We here use both the age and phylogenetic position of M.
caribea and other fossil monocots to estimate the timing of diver-
sification for Orchidaceae.

We calibrated a molecular phylogenetic tree of Orchidaceae by
implementing a relaxed-clock model through penalized likelihood
and non-parametric rate smoothing (NPRS). We built a molecular
phylogenetic tree of Orchidaceae that was based on plastid DNA
sequences obtained from GenBank for 55 orchid genera representing
all major lineages in the family, and five basal Asparagales genera as
outgroup taxa. Our divergence time estimates using penalized like-
lihood suggest that extant Orchidaceae shared a most recent com-
mon ancestor in the Late Cretaceous, 76 6 5 to 84 6 6 Myr ago,
depending on whether we use the oldest or youngest estimates of
the ages of the fossils used to calibrate the relaxed molecular clock
(Fig. 4). Similarly, age estimates obtained using NPRS suggest
that crown Orchidaceae shared a common ancestor 76 6 4 to
83 6 4 Myr ago. Our results also suggest that stem lineages of all five
orchid subfamilies were present early in the evolutionary history of
Orchidaceae, before the end of the Cretaceous, ,65 Myr ago (Fig. 4).
The extant lineages of the two largest orchid subfamily clades
(Orchidoideae and Epidendroideae), which together encompass
.95% of the living orchid species, began to diversify early in the
Tertiary, although more thorough taxonomic sampling could result
in older age estimates of their common ancestor.

The discovery of Meliorchis caribea and the internally calibrated
molecular clock analyses presented here reject the hypothesis of a
relatively recent (Eocene or younger) origin of Orchidaceae4,21.
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Figure 2 | Morphology and pollinarium placement of modern Goodyerinae
and hypothetical reconstruction of floral morphology of Meliorchis caribea.
a, The parallel lip (lp) and column (cl) and the erect anther (an) of extant
Goodyerinae typically result in the pollinarium (pl) attachment on the
pollinator’s mouthparts. b, The attachment of the pollinarium to the
mesoscutellum (dorsal surface of thorax) of a worker bee is only possible
when the lip and column of the flower are parallel but the anther is bent.
Under this scenario, the distance between the lip and the column must be
,2.5 mm to enable a P. dominicana worker to crawl into the flower and
remove the pollinarium with its mesoscutellum as it retreats; st, stigma;
vi,viscidium.
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Figure 3 | Cladogram showing the estimated position of Meliorchis among
modern clades in the orchid subfamily Orchidoideae. A strict consensus of
the 129 shortest trees (tree length 5 42, consistency index 5 0.619, retention
index 5 0.660) obtained using 25 morphological characters for 15 taxa;
values beside nodes correspond to bootstrap percentages (1,000 replicates).
None of the shortest trees recovered Meliorchis as sister to all the other
Goodyerinae included.
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Instead, our results favour the hypothesis of an ancient (Late
Cretaceous)22,25 origin of extant Orchidaceae, but at the same time
support a Tertiary radiation of the most diverse epiphytic clades. Our
age estimates are younger than the oldest proposed for the family by
previous studies25, but we note that our age calculations should be
regarded as minimum estimates, which could be pushed back with
additional fossil discoveries. Our scenario corresponds to that prev-
iously proposed2,22, is consistent with the observed disjunct pantro-
pical distributions of the subfamily clades and the early-splitting
genera (for example, Vanilla), and reinforces the possibility of a
Late Cretaceous biotic exchange between tropical continents.

METHODS

Colour photomicrographs were taken with a JVC digital camera (KYF75U)

mounted on a MZ16 Leica dissecting scope; black and white micrographs were

taken with a Retiga EXi digital camera mounted on a Leica Leitz-dmrb com-

pound microscope (objective 340). In both cases, 10 sequential shots at different

focal depths were processed with the Auto-Montage software (Syncroscopy,

2002) to produce a single composite image.

The phylogenetic position of Meliorchis was explored using morphological

characters from flowers, pollinaria and pollen micro-morphology, all of which

were directly observable or inferable from the type specimen of M. caribea. We

treated all character states as unordered and weighted them equally. Because

Meliorchis unambiguously belongs to the subfamily Orchidoideae, we only

included representative genera from this group. We selected outgroup taxa on

the basis of previous studies that used both morphological18 and molecular26

data. Heuristic tree searches were performed via maximum parsimony with

the TBR algorithm (100 random addition replicates). A total of 1,000 replicates

were run to estimate bootstrap support; all analyses were performed in PAUP*

v.4.0b.

Consensus phylogenetic trees of bayesian analyses were obtained with the

software MrBayes v3.1.1 (for details, see Supplementary Materials). Our topol-

ogies agree with those obtained by previous studies27,28. Divergence times were

calculated by penalized likelihood and NPRS, using the truncated Newton algo-

rithm in the software r8s v 1.7129. Two sets of dates were used, corresponding to

the youngest and oldest estimates of the ages of the fossils used as node age

constraints. We applied (1) the age of Meliorchis (15–20 Myr old; ref. 3) as a
minimum age for the monophyletic Goodyerinae; (2) the age of the oldest

known Asparagales (93–105 Myr old, see Supplementary Methods for details)

as a minimum age constraint at the root of the tree; and (3) the age of the oldest

known fossil monocot as the maximum age at the root of the tree (110–

120 Myr old; ref. 30).
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